
International Journal of Business, Engineering, Science & Technology (IJBEST) Vol.1 Issue 1

148

IJBEST ISSN (2959-586X) and ISBN (978-9970-9943-4-2)

FareFlow: An IoT and Cloud-Based Smart Bus

Fare Collection System for Sustainable Urban

Transport

PUTSHU LUNGHE Samuel 1, Dr. Mayur Kumar Chhipa 2

1 Student, Department of Electronics and Communication Engineering, ISBAT University
2 Head of Engineering, Faculty of Engineering, ISBAT University

*1 Email Address: samuellunghe@gmail.com

*2 Email Address: mayur.fict@isbatuniversity.com

Abstract

Public transportation in developing countries, including Uganda, continues to rely heavily on manual

cash-based fare collection methods. These systems are prone to inefficiencies such as delays during

boarding, revenue leakage, lack of transparency, and hygiene risks from physical cash handling. This

study proposes FareFlow, a smart RFID-based bus fare payment system that leverages Internet of Things

(IoT) devices and cloud computing to address these challenges while contributing to the United Nations

Sustainable Development Goals (SDG 9: Industry, Innovation & Infrastructure, and SDG 11:

Sustainable Cities & Communities). The system integrates an RC522 RFID reader with a NodeMCU

ESP8266 microcontroller to enable contactless passenger identification and fare deduction. A GPS

module provides real-time bus tracking, while cloud services based on Firebase Firestore and an

Express.js backend manage user accounts, balances, and transaction logs.

FareFlow also features web-based applications for three stakeholder groups: passengers, bus operators,

and administrators. Passengers can view balances, monitor transaction history, and receive SMS/email

alerts. Operators gain real-time visibility of fare activities on their routes, while administrators access

centralized dashboards for system oversight, card registration, and revenue analysis. Prototype

implementation and functional testing confirmed the system’s reliability, with transactions processed in

under 1.4 seconds and real-time updates synchronized across the cloud. Results demonstrate

improvements in efficiency, accountability, and user convenience. By enhancing operational

transparency, reducing cash dependency, and enabling digital infrastructure for public transport,

FareFlow illustrates how IoT and cloud technologies can support sustainable, inclusive, and resilient

urban mobility in Uganda and similar contexts.

Keywords: RFID, IoT, Smart Transportation, Cloud Computing, Bus Fare System, Uganda, SDGs

International Journal of Business, Engineering, Science & Technology (IJBEST) Vol.1 Issue 1

149

IJBEST ISSN (2959-586X) and ISBN (978-9970-9943-4-2)

1. Introduction

Public transportation is vital to economic and social activities in developing countries. In Uganda, buses

and commuter vehicles form the backbone of daily mobility, yet fare collection remains largely manual

and cash-based. This leads to inefficiencies such as long boarding times, revenue leakage, fare disputes,

theft risks, and hygiene concerns; issues highlighted further during public health crises like COVID-19.

These challenges show the need for smarter and more transparent fare management systems.

Advances in the Internet of Things (IoT), cloud computing, and contactless payments present

opportunities to modernize fare collection. While many developed countries have adopted RFID-based

systems to reduce cash dependency and improve efficiency, adoption in Africa has been limited due to

costs, infrastructure, and lack of localized designs.

This paper introduces FareFlow, a smart RFID-based bus fare payment system built with cost-effective

components and open-source tools. It uses RFID cards for passenger identification, a NodeMCU

ESP8266 microcontroller for IoT communication, and Firebase with Express.js for real-time backend

processing. The system targets three stakeholders: passengers (contactless payments, notifications,

balance history), operators (real-time monitoring and revenue insights), and administrators (centralized

control and reporting).

The study’s objectives are:

1. To design and implement a contactless fare collection system using RFID and IoT hardware.

2. To integrate a cloud-based backend for real-time transaction processing and data logging.

3. To develop web-based applications tailored to passengers, operators, and administrators.

The hypothesis is that an IoT- and cloud-based RFID fare system can significantly enhance efficiency,

transparency, and hygiene compared to cash. By leveraging accessible technology, FareFlow offers an

affordable solution for Uganda’s transport sector, improving passenger convenience, financial

accountability, and public health.

The rest of this paper is organized as follows: Section 2 reviews related literature, Section 3 presents

system design, Section 4 describes implementation and testing, and Section 5 concludes with

recommendations.

2. Literature Review

The advancement of smart transportation systems has been closely linked with developments in Radio

Frequency Identification (RFID), Internet of Things (IoT), and cloud computing technologies. Oberli et

al. (2010) evaluated UHF RFID technologies for real-time passenger recognition, demonstrating their

potential to improve operational efficiency in public transit systems through fast and reliable passenger

identification. Similarly, Li and Wei (2008) proposed a real-time vehicle routing system for RFID-

tagged goods, highlighting the scalability of RFID applications beyond simple identification into

logistics and mobility solutions.

In the context of IoT-enabled services, Al-Kababji et al. (2019) showcased how Firebase Real-time

Database can be integrated with wireless monitoring systems, confirming the reliability of cloud-based

infrastructures in handling real-time data for healthcare, which parallels the transportation sector’s

need for speed and accuracy. Other researchers have emphasized the importance of simulation and

optimization tools in system design, such as Chirită et al. (2017), who applied SolidWorks modeling

International Journal of Business, Engineering, Science & Technology (IJBEST) Vol.1 Issue 1

150

IJBEST ISSN (2959-586X) and ISBN (978-9970-9943-4-2)

for flywheel design. Their work illustrates how computer-aided prototyping can accelerate the

development of complex engineering solutions like FareFlow.

Commercial and open-source platforms also play a critical role in deploying scalable solutions. For

instance, Firebase (n.d.), Express.js (n.d.), React (n.d.), and NodeMCU (n.d.) provide robust

frameworks for backend processing, frontend design, and IoT device integration. The availability of

low-cost RFID modules such as RC522 (n.d.) has further reduced implementation barriers for

resource-constrained regions. Together, these studies and tools underline the global trend toward

digital, contactless, and transparent fare collection systems, setting a foundation for the proposed

FareFlow system.

3. Methodology and System Design

The design and development of the FareFlow system followed a structured methodology that combined

hardware prototyping, backend development, and user interface design. The system was developed with

the objective of creating a low-cost, scalable, and transparent fare collection platform that leverages IoT

and cloud computing technologies.

3.1 System Architecture

FareFlow was developed using a three-tier architecture (input layer, processing layer, and output layer).

Input Layer: Comprises the hardware installed on buses, including the RC522 RFID reader, NodeMCU

ESP8266 microcontroller, NEO-6M GPS module, LCD display, buzzer, and LED indicators. This layer

is responsible for capturing passenger card data, providing feedback, and transmitting data to the server.

Processing Layer: Implements the backend logic through an Express.js server and Firebase Firestore

database. This layer manages user authentication, fare deduction, transaction logging, and system

analytics. It also integrates SMS and email notification services for real-time communication.

Output Layer: Provides feedback and monitoring to stakeholders via web interfaces, SMS, and email.

Passengers interact through a web portal, bus operators use a real-time dashboard, and administrators

oversee the system through a centralized control panel.

Figure1: System Architecture

3.2 Hardware Components

The hardware prototype was implemented with cost-effective and readily available components:

INPUT
LAYER

PROCESSIN
G LAYER

OUTPUT
LAYER

o RFID Reader

(RC522),

o NodeMCU

ESP8266,

o GPS Module,

o I2C LCD, LEDs,

o ExpressJS

Backend

o Firebase

Firestore and

Real-time

Database

Firabase

o SMS and Email

Notifications

o Web Interfaces

Updates

MQTT

MQTT

HTT
PS

International Journal of Business, Engineering, Science & Technology (IJBEST) Vol.1 Issue 1

151

IJBEST ISSN (2959-586X) and ISBN (978-9970-9943-4-2)

• NodeMCU ESP8266: Serves as the microcontroller and Wi-Fi-enabled IoT hub. It

communicates with the RFID reader and backend server.

• RC522 RFID Reader: Reads the unique ID (UID) of each passenger’s RFID card.

• RFID Cards/Tags: Store user account information and balance in the backend system.

• 16x2 I2C LCD Display: Provides real-time transaction messages (e.g., “Payment Success,”

“Low Balance”).

• LEDs and Buzzer: Deliver instant audio-visual confirmation of successful or failed transactions.

• NEO-6M GPS Module: Tracks bus location, enabling route analysis and future integration with

dynamic pricing or live tracking.

• Lithium-Ion Battery Pack: Provides portable power for the system, ensuring uninterrupted

operation.

Figure 2: Hardware Setup

3.3 Software Components

The software stack integrates microcontroller firmware, backend services, and frontend applications:

• Firmware Development: Implemented in Arduino IDE (C/C++). The firmware enables the

NodeMCU to read RFID UIDs, communicate with the backend, and control LEDs, buzzer, and

LCD outputs.

• Backend Server: Built with Express.js and deployed on Railway. The backend verifies user

identities, deducts fares, and logs transactions. Firebase Authentication provides secure login

and role-based access.

International Journal of Business, Engineering, Science & Technology (IJBEST) Vol.1 Issue 1

152

IJBEST ISSN (2959-586X) and ISBN (978-9970-9943-4-2)

• Database: Firebase Firestore stores user profiles, balances, and transaction histories, while

Firebase Real-time Database manages live bus activity data.

• Frontend Interfaces: Developed using React.js and deployed on Vercel. Each stakeholder

(passenger, operator, administrator) has access to a dedicated web portal.

• Notification Services: Email JS for automated email alerts and Africa’s Talking API for SMS

notifications.

3.4 Workflow of the System

The operational workflow of the FareFlow system is designed to ensure real-time fare processing,

accurate balance management, and seamless passenger interaction. The process proceeds as follows:

• Card Tapping: A passenger taps their RFID card on the bus-mounted RC522 reader.

• UID Retrieval and Transmission: The NodeMCU ESP8266 retrieves the card’s unique identifier

(UID) and transmits it securely to the backend Node.js server via Wi-Fi using the MQTT

protocol.

• Verification and Minimum Balance Check: The server queries Firebase Firestore to verify the

UID and retrieves the passenger’s account details. It checks whether the account balance is above

the minimum threshold of 1000 UGX. If the balance is insufficient, the card is rejected and an

error notification is issued.

• Route Type Determination: The backend determines the applicable route type:

o Fixed Fare Route: The fare is a flat, predetermined rate for the entire trip. If the passenger

has sufficient balance, the fare is deducted immediately, and the passenger is notified via

SMS and email.

o Dynamic Fare Route: The fare depends on the distance travelled by the passenger.

• Dynamic Fare Processing: For dynamic routes, the backend checks whether the passenger’s card

is already registered on the active trip:

o Entry Tap: If the passenger is boarding, the system records the GPS coordinates of the

entry point and registers the passenger as active on the bus.

o Exit Tap: When the passenger exits, they tap their card again. The system records the exit

coordinates, calculates the travel distance using the Euclidean distance formula, and

computes the fare at a rate of 500 UGX per kilometer.

The Euclidean distance between two geographic coordinates (𝑥1, 𝑦1) 𝑎𝑛𝑑 (𝑥2, 𝑦2) is given by:

𝐷 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

where:

o 𝑥1, 𝑦1 = entry latitude and longitude,

o 𝑥2, 𝑦2 = exit latitude and longitude,

o 𝐷 = distance traveled (in kilometers).

The fare is then calculated as:

𝐹𝑎𝑟𝑒 = 𝐷 × 500 𝑈𝐺𝑋/𝑘𝑚

Notifications detailing the trip cost and remaining balance are sent via SMS and email to the

passenger.

Dynamic fare calculation using GPS coordinates adds fairness and adaptability to the payment system.

International Journal of Business, Engineering, Science & Technology (IJBEST) Vol.1 Issue 1

153

IJBEST ISSN (2959-586X) and ISBN (978-9970-9943-4-2)

Passenger Feedback: Based on the backend response, the NodeMCU updates the I2C LCD display

with a confirmation or error message, while LEDs and buzzer signals provide instant feedback.

Transaction Logging and Notifications: All completed transactions, including UID, timestamp, route

type, amount deducted, and bus ID, are recorded in Firebase Firestore. SMS and email notifications

are dispatched to ensure transparency and passenger awareness.This workflow ensures real-time

validation, transparent fare deduction, and automated logging, while supporting both fixed and

distance-based dynamic pricing models.

Figure 3: System Flowchart

4. Results and Evaluation

The FareFlow prototype was implemented and tested to validate its effectiveness in addressing the

inefficiencies of cash-based fare collection in Uganda’s public transportation. The evaluation focused

on functional accuracy, system performance, user experience, and overall feasibility for deployment.

4.1 Testing Objectives

The testing phase aimed to:

• Verify RFID card scanning and UID validation.

• Ensure real-time balance deduction and transaction logging.

• Assess backend reliability and communication between hardware and cloud.

• Evaluate notification systems (SMS and email).

International Journal of Business, Engineering, Science & Technology (IJBEST) Vol.1 Issue 1

154

IJBEST ISSN (2959-586X) and ISBN (978-9970-9943-4-2)

• Validate user interface functionality for passengers, operators, and administrators.

4.2 Testing Environment

Hardware Setup: NodeMCU ESP8266, RC522 RFID reader, 16x2 LCD, buzzer, LEDs, GPS module,

and rechargeable battery pack.

Software Setup: Backend (Express.js) hosted on Railway, frontend (React.js) deployed on Vercel,

Firebase Firestore as cloud database.

Network: Wi-Fi enabled environment.

Devices: RFID cards and desktop browser interfaces for dashboards.

4.3 Functional Testing

Functional tests were carried out on different card scenarios:

Table 1: Functional Testing Results

Test Case Expected Result Outcome

Valid UID with sufficient balance Fare deducted, LCD success message, SMS/email

sent

Passed

Valid UID with insufficient

balance

Transaction rejected, LCD error message, alert sent Passed

Fixed fare route Flat rate deducted, confirmation sent Passed

Dynamic route (entry + exit taps) Distance-based fare calculated and deducted Passed

Inactive bus No transactions processed, error displayed Passed

All tests confirmed that the system responded appropriately under different operational conditions.

Figure 2: Device Starting and Route Setting

International Journal of Business, Engineering, Science & Technology (IJBEST) Vol.1 Issue 1

155

IJBEST ISSN (2959-586X) and ISBN (978-9970-9943-4-2)

Figure 3: Card Reading and Successful Payment

Figure 4: Dynamic pricing snapshot and Bus Deactivation

4.4 Integration Testing

Integration testing validated communication between system modules:

• Hardware-Backend Communication: The NodeMCU transmitted card data reliably via MQTT,

with server responses received in <1.3 seconds.

• Backend-Database Interaction: Firebase Firestore updated balances and logged transactions in

real time.

• Backend-Notification Services: SMS messages (Africa’s Talking) and email alerts (EmailJS)

were delivered consistently, though occasional delays were observed due to API rate limits.

International Journal of Business, Engineering, Science & Technology (IJBEST) Vol.1 Issue 1

156

IJBEST ISSN (2959-586X) and ISBN (978-9970-9943-4-2)

Figure 5: Email Notifications

Figure 6: SMS Notifications

4.5 User Interface Evaluation

User interfaces were assessed for usability and correctness:

International Journal of Business, Engineering, Science & Technology (IJBEST) Vol.1 Issue 1

157

IJBEST ISSN (2959-586X) and ISBN (978-9970-9943-4-2)

• Passenger Portal: Allowed users to view balances and transaction history. Recharge request

functionality worked correctly.

Figure 7: Passenger App UI

• Operator/Driver Dashboard: Displayed live passenger activity and fare deductions per trip.

Figure 8: Operator/Driver Web UI

• Admin Control Panel: Enabled administrators to register/deactivate cards, manage users, and

monitor analytics. Role-based access control was enforced.

International Journal of Business, Engineering, Science & Technology (IJBEST) Vol.1 Issue 1

158

IJBEST ISSN (2959-586X) and ISBN (978-9970-9943-4-2)

Figure 9: Admin Dashboard UI

4.6 Limitations Identified

Despite the successful results, several limitations were observed:

• The system’s dependency on stable internet connectivity may limit usability in rural or low-

infrastructure areas.

• Hardware prototype needs improved ruggedness and environmental resilience for real-world

deployment

• The dynamic fare computation currently uses Euclidean (straight-line) distance between entry

and exit points, which may underestimate the actual travel distance along curved or non-linear

routes. Incorporating road-network-based or GPS-trace distance calculations (e.g., Haversine or

map-matching algorithms) would improve accuracy and fairness.

• Recharge process not fully integrated with mobile money APIs, limiting user convenience.

• Occasional RFID scan alignment errors, requiring passengers to retap cards.

5. Conclusion

This study presented FareFlow, a smart bus fare collection system that integrates RFID technology, IoT

hardware, and cloud-based services to address inefficiencies in Uganda’s cash-dependent public

transportation sector. Prototype implementation demonstrated that FareFlow can process transactions in

International Journal of Business, Engineering, Science & Technology (IJBEST) Vol.1 Issue 1

159

IJBEST ISSN (2959-586X) and ISBN (978-9970-9943-4-2)

under 1.4 seconds, synchronize balances and logs in real time, and provide transparency through web,

SMS, and email notifications. The system improves efficiency, accountability, and hygiene by

minimizing human error, reducing boarding delays, and lowering risks associated with cash handling.

The evaluation further showed that FareFlow is both feasible and scalable using cost-effective

components such as NodeMCU ESP8266, RC522 RFID reader, and Firebase Firestore. Stakeholders;

passengers, operators, and administrators; benefit from tailored interfaces that enhance user experience,

financial oversight, and system governance. Nonetheless, challenges such as dependence on stable

internet connectivity, limited mobile money integration, and non-ruggedized hardware must be

addressed before large-scale deployment.

Overall, FareFlow demonstrates how affordable IoT and cloud-based technologies can modernize public

transportation in developing countries while directly contributing to SDG 9 by fostering innovation and

digital infrastructure, and to SDG 11 by promoting sustainable, safe, and inclusive urban mobility.

Future work should focus on integrating mobile payment systems, improving hardware durability, and

piloting the solution at scale. By doing so, FareFlow can serve as a model for smart, transparent, and

sustainable fare collection across Africa and beyond.

References

Oberli, C., Torres-Torriti, M., & Landau, D. (2010). Performance evaluation of UHF RFID technologies

for real-time passenger recognition in intelligent public transportation systems. IEEE Transactions on

Intelligent Transportation Systems, 11(3), 748–753. https://doi.org/10.1109/TITS.2010.2048429

Li, F., & Wei, Y. (2008). A real-time vehicle routing system for RFID-tagged goods transportation. In

2008 IEEE International Conference on Service Operations and Logistics, and Informatics (pp. 2892–

2897). IEEE. https://doi.org/10.1109/SOLI.2008.4683029

Al-Kababji, A., et al. (2019). IoT-based fall and ECG monitoring system: Wireless communication

system based Firebase Realtime Database. In 2019 IEEE SmartWorld, Ubiquitous Intelligence &

Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big

Data Computing, Internet of People and Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (pp. 1480–1485). IEEE.

https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00267

Chirită, I., Tănase, N., Apostol, S. E., Ilie, C., & Popa, M. (2017). Design optimization of a flywheel

using SolidWorks modeling and simulation capabilities. In 2017 International Conference on ENERGY

and ENVIRONMENT (CIEM) (pp. 344–348). IEEE. https://doi.org/10.1109/CIEM.2017.8120858

Firebase. (n.d.). Firebase documentation. https://firebase.google.com/docs

Express.js. (n.d.). Express.js guide. https://expressjs.com

React. (n.d.). React documentation. https://reactjs.org/docs/getting-started.html

NodeMCU Documentation. (n.d.). ESP8266 developer guide. https://nodemcu.readthedocs.io

RC522 RFID Module. (n.d.). Datasheet and setup. https://components101.com

EmailJS. (n.d.). Email sending via JavaScript. https://www.emailjs.com/docs

Africa's Talking. (n.d.). SMS API documentation. https://developers.africastalking.com

MQTT.org. (n.d.). MQTT protocol technical overview. https://mqtt.org/documentation

Vercel. (n.d.). Frontend deployment platform. https://vercel.com

Railway. (n.d.). Express.js deployment platform. https://railway.app

https://firebase.google.com/docs
https://expressjs.com/
https://reactjs.org/docs/getting-started.html
https://nodemcu.readthedocs.io/
https://components101.com/
https://www.emailjs.com/docs
https://developers.africastalking.com/
https://mqtt.org/documentation
https://vercel.com/
https://railway.app/

