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Abstract 

Public transportation in developing countries, including Uganda, continues to rely heavily on manual 

cash-based fare collection methods. These systems are prone to inefficiencies such as delays during 

boarding, revenue leakage, lack of transparency, and hygiene risks from physical cash handling. This 

study proposes FareFlow, a smart RFID-based bus fare payment system that leverages Internet of Things 

(IoT) devices and cloud computing to address these challenges while contributing to the United Nations 

Sustainable Development Goals (SDG 9: Industry, Innovation & Infrastructure, and SDG 11: 

Sustainable Cities & Communities). The system integrates an RC522 RFID reader with a NodeMCU 

ESP8266 microcontroller to enable contactless passenger identification and fare deduction. A GPS 

module provides real-time bus tracking, while cloud services based on Firebase Firestore and an 

Express.js backend manage user accounts, balances, and transaction logs.  

 

FareFlow also features web-based applications for three stakeholder groups: passengers, bus operators, 

and administrators. Passengers can view balances, monitor transaction history, and receive SMS/email 

alerts. Operators gain real-time visibility of fare activities on their routes, while administrators access 

centralized dashboards for system oversight, card registration, and revenue analysis. Prototype 

implementation and functional testing confirmed the system’s reliability, with transactions processed in 

under 1.4 seconds and real-time updates synchronized across the cloud. Results demonstrate 

improvements in efficiency, accountability, and user convenience. By enhancing operational 

transparency, reducing cash dependency, and enabling digital infrastructure for public transport, 

FareFlow illustrates how IoT and cloud technologies can support sustainable, inclusive, and resilient 

urban mobility in Uganda and similar contexts. 

 

Keywords: RFID, IoT, Smart Transportation, Cloud Computing, Bus Fare System, Uganda, SDGs 

 



International Journal of Business, Engineering, Science & Technology (IJBEST)                            Vol.1 Issue 1 

149 

IJBEST  ISSN (2959-586X) and ISBN (978-9970-9943-4-2)  

 

1. Introduction 

Public transportation is vital to economic and social activities in developing countries. In Uganda, buses 

and commuter vehicles form the backbone of daily mobility, yet fare collection remains largely manual 

and cash-based. This leads to inefficiencies such as long boarding times, revenue leakage, fare disputes, 

theft risks, and hygiene concerns; issues highlighted further during public health crises like COVID-19. 

These challenges show the need for smarter and more transparent fare management systems. 

Advances in the Internet of Things (IoT), cloud computing, and contactless payments present 

opportunities to modernize fare collection. While many developed countries have adopted RFID-based 

systems to reduce cash dependency and improve efficiency, adoption in Africa has been limited due to 

costs, infrastructure, and lack of localized designs. 

This paper introduces FareFlow, a smart RFID-based bus fare payment system built with cost-effective 

components and open-source tools. It uses RFID cards for passenger identification, a NodeMCU 

ESP8266 microcontroller for IoT communication, and Firebase with Express.js for real-time backend 

processing. The system targets three stakeholders: passengers (contactless payments, notifications, 

balance history), operators (real-time monitoring and revenue insights), and administrators (centralized 

control and reporting). 

The study’s objectives are: 

1. To design and implement a contactless fare collection system using RFID and IoT hardware. 

2. To integrate a cloud-based backend for real-time transaction processing and data logging. 

3. To develop web-based applications tailored to passengers, operators, and administrators. 

The hypothesis is that an IoT- and cloud-based RFID fare system can significantly enhance efficiency, 

transparency, and hygiene compared to cash. By leveraging accessible technology, FareFlow offers an 

affordable solution for Uganda’s transport sector, improving passenger convenience, financial 

accountability, and public health. 

The rest of this paper is organized as follows: Section 2 reviews related literature, Section 3 presents 

system design, Section 4 describes implementation and testing, and Section 5 concludes with 

recommendations. 

 

2. Literature Review 

The advancement of smart transportation systems has been closely linked with developments in Radio 

Frequency Identification (RFID), Internet of Things (IoT), and cloud computing technologies. Oberli et 

al. (2010) evaluated UHF RFID technologies for real-time passenger recognition, demonstrating their 

potential to improve operational efficiency in public transit systems through fast and reliable passenger 

identification. Similarly, Li and Wei (2008) proposed a real-time vehicle routing system for RFID-

tagged goods, highlighting the scalability of RFID applications beyond simple identification into 

logistics and mobility solutions. 

In the context of IoT-enabled services, Al-Kababji et al. (2019) showcased how Firebase Real-time 

Database can be integrated with wireless monitoring systems, confirming the reliability of cloud-based 

infrastructures in handling real-time data for healthcare, which parallels the transportation sector’s 

need for speed and accuracy. Other researchers have emphasized the importance of simulation and 

optimization tools in system design, such as Chirită et al. (2017), who applied SolidWorks modeling 
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for flywheel design. Their work illustrates how computer-aided prototyping can accelerate the 

development of complex engineering solutions like FareFlow. 

Commercial and open-source platforms also play a critical role in deploying scalable solutions. For 

instance, Firebase (n.d.), Express.js (n.d.), React (n.d.), and NodeMCU (n.d.) provide robust 

frameworks for backend processing, frontend design, and IoT device integration. The availability of 

low-cost RFID modules such as RC522 (n.d.) has further reduced implementation barriers for 

resource-constrained regions. Together, these studies and tools underline the global trend toward 

digital, contactless, and transparent fare collection systems, setting a foundation for the proposed 

FareFlow system. 

3. Methodology and System Design 

The design and development of the FareFlow system followed a structured methodology that combined 

hardware prototyping, backend development, and user interface design. The system was developed with 

the objective of creating a low-cost, scalable, and transparent fare collection platform that leverages IoT 

and cloud computing technologies. 

 

3.1 System Architecture 

FareFlow was developed using a three-tier architecture (input layer, processing layer, and output layer). 

Input Layer: Comprises the hardware installed on buses, including the RC522 RFID reader, NodeMCU 

ESP8266 microcontroller, NEO-6M GPS module, LCD display, buzzer, and LED indicators. This layer 

is responsible for capturing passenger card data, providing feedback, and transmitting data to the server. 

Processing Layer: Implements the backend logic through an Express.js server and Firebase Firestore 

database. This layer manages user authentication, fare deduction, transaction logging, and system 

analytics. It also integrates SMS and email notification services for real-time communication. 

Output Layer: Provides feedback and monitoring to stakeholders via web interfaces, SMS, and email. 

Passengers interact through a web portal, bus operators use a real-time dashboard, and administrators 

oversee the system through a centralized control panel. 

 

 

 

 

 

 

 

 

 

 

Figure1: System Architecture 

3.2 Hardware Components 
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INPUT 
LAYER 

PROCESSIN
G LAYER 

OUTPUT 
LAYER 

o RFID Reader 

(RC522),  

o NodeMCU 

ESP8266,  

o GPS Module,  

o I2C LCD, LEDs, 

o ExpressJS 

Backend 

o Firebase 

Firestore and 

Real-time 

Database 

Firabase 

o SMS and Email 

Notifications 

o Web Interfaces 

Updates 

MQTT 

MQTT 

HTT
PS 



International Journal of Business, Engineering, Science & Technology (IJBEST)                            Vol.1 Issue 1 

151 

IJBEST  ISSN (2959-586X) and ISBN (978-9970-9943-4-2)  

 

• NodeMCU ESP8266: Serves as the microcontroller and Wi-Fi-enabled IoT hub. It 

communicates with the RFID reader and backend server. 

• RC522 RFID Reader: Reads the unique ID (UID) of each passenger’s RFID card. 

• RFID Cards/Tags: Store user account information and balance in the backend system. 

• 16x2 I2C LCD Display:  Provides real-time transaction messages (e.g., “Payment Success,” 

“Low Balance”). 

• LEDs and Buzzer: Deliver instant audio-visual confirmation of successful or failed transactions. 

• NEO-6M GPS Module: Tracks bus location, enabling route analysis and future integration with 

dynamic pricing or live tracking. 

• Lithium-Ion Battery Pack: Provides portable power for the system, ensuring uninterrupted 

operation. 

 

 
Figure 2: Hardware Setup 

3.3 Software Components 

The software stack integrates microcontroller firmware, backend services, and frontend applications: 

• Firmware Development: Implemented in Arduino IDE (C/C++). The firmware enables the 

NodeMCU to read RFID UIDs, communicate with the backend, and control LEDs, buzzer, and 

LCD outputs. 

• Backend Server: Built with Express.js and deployed on Railway. The backend verifies user 

identities, deducts fares, and logs transactions. Firebase Authentication provides secure login 

and role-based access. 
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• Database: Firebase Firestore stores user profiles, balances, and transaction histories, while 

Firebase Real-time Database manages live bus activity data. 

• Frontend Interfaces: Developed using React.js and deployed on Vercel. Each stakeholder 

(passenger, operator, administrator) has access to a dedicated web portal. 

• Notification Services:  Email JS for automated email alerts and Africa’s Talking API for SMS 

notifications. 

 

3.4 Workflow of the System 

The operational workflow of the FareFlow system is designed to ensure real-time fare processing, 

accurate balance management, and seamless passenger interaction. The process proceeds as follows: 

• Card Tapping: A passenger taps their RFID card on the bus-mounted RC522 reader. 

• UID Retrieval and Transmission: The NodeMCU ESP8266 retrieves the card’s unique identifier 

(UID) and transmits it securely to the backend Node.js server via Wi-Fi using the MQTT 

protocol. 

• Verification and Minimum Balance Check: The server queries Firebase Firestore to verify the 

UID and retrieves the passenger’s account details. It checks whether the account balance is above 

the minimum threshold of 1000 UGX. If the balance is insufficient, the card is rejected and an 

error notification is issued. 

• Route Type Determination: The backend determines the applicable route type: 

o Fixed Fare Route: The fare is a flat, predetermined rate for the entire trip. If the passenger 

has sufficient balance, the fare is deducted immediately, and the passenger is notified via 

SMS and email. 

o Dynamic Fare Route: The fare depends on the distance travelled by the passenger. 

• Dynamic Fare Processing: For dynamic routes, the backend checks whether the passenger’s card 

is already registered on the active trip: 

o Entry Tap: If the passenger is boarding, the system records the GPS coordinates of the 

entry point and registers the passenger as active on the bus. 

o Exit Tap: When the passenger exits, they tap their card again. The system records the exit 

coordinates, calculates the travel distance using the Euclidean distance formula, and 

computes the fare at a rate of 500 UGX per kilometer. 

The Euclidean distance between two geographic coordinates (𝑥1, 𝑦1) 𝑎𝑛𝑑 (𝑥2, 𝑦2) is given by: 

𝐷 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 

where: 

o 𝑥1, 𝑦1 = entry latitude and longitude, 

o 𝑥2, 𝑦2 = exit latitude and longitude, 

o 𝐷 = distance traveled (in kilometers). 

The fare is then calculated as: 

𝐹𝑎𝑟𝑒 = 𝐷 × 500 𝑈𝐺𝑋/𝑘𝑚  

Notifications detailing the trip cost and remaining balance are sent via SMS and email to the 

passenger.  

Dynamic fare calculation using GPS coordinates adds fairness and adaptability to the payment system. 
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Passenger Feedback: Based on the backend response, the NodeMCU updates the I2C LCD display 

with a confirmation or error message, while LEDs and buzzer signals provide instant feedback. 

Transaction Logging and Notifications: All completed transactions, including UID, timestamp, route 

type, amount deducted, and bus ID, are recorded in Firebase Firestore. SMS and email notifications 

are dispatched to ensure transparency and passenger awareness.This workflow ensures real-time 

validation, transparent fare deduction, and automated logging, while supporting both fixed and 

distance-based dynamic pricing models. 

 
Figure 3: System Flowchart 

 

4. Results and Evaluation 

The FareFlow prototype was implemented and tested to validate its effectiveness in addressing the 

inefficiencies of cash-based fare collection in Uganda’s public transportation. The evaluation focused 

on functional accuracy, system performance, user experience, and overall feasibility for deployment. 

 

4.1 Testing Objectives 

The testing phase aimed to: 

• Verify RFID card scanning and UID validation. 

• Ensure real-time balance deduction and transaction logging. 

• Assess backend reliability and communication between hardware and cloud. 

• Evaluate notification systems (SMS and email). 
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• Validate user interface functionality for passengers, operators, and administrators. 

 

4.2 Testing Environment 

Hardware Setup: NodeMCU ESP8266, RC522 RFID reader, 16x2 LCD, buzzer, LEDs, GPS module, 

and rechargeable battery pack. 

Software Setup: Backend (Express.js) hosted on Railway, frontend (React.js) deployed on Vercel, 

Firebase Firestore as cloud database. 

Network: Wi-Fi enabled environment. 

Devices: RFID cards and desktop browser interfaces for dashboards. 

4.3 Functional Testing 

Functional tests were carried out on different card scenarios: 

Table 1: Functional Testing Results 

Test Case Expected Result Outcome 

Valid UID with sufficient balance Fare deducted, LCD success message, SMS/email 

sent 

Passed 

Valid UID with insufficient 

balance 

Transaction rejected, LCD error message, alert sent Passed 

Fixed fare route Flat rate deducted, confirmation sent Passed 

Dynamic route (entry + exit taps) Distance-based fare calculated and deducted Passed 

Inactive bus No transactions processed, error displayed Passed 

All tests confirmed that the system responded appropriately under different operational conditions. 

 

 
Figure 2: Device Starting and Route Setting 
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Figure 3: Card Reading and Successful Payment 

 
Figure 4: Dynamic pricing snapshot and Bus Deactivation 

 

4.4 Integration Testing 

Integration testing validated communication between system modules: 

• Hardware-Backend Communication: The NodeMCU transmitted card data reliably via MQTT, 

with server responses received in <1.3 seconds. 

• Backend-Database Interaction: Firebase Firestore updated balances and logged transactions in 

real time. 

• Backend-Notification Services: SMS messages (Africa’s Talking) and email alerts (EmailJS) 

were delivered consistently, though occasional delays were observed due to API rate limits. 
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Figure 5: Email Notifications 

  
Figure 6: SMS Notifications 

 

4.5 User Interface Evaluation 

User interfaces were assessed for usability and correctness: 



International Journal of Business, Engineering, Science & Technology (IJBEST)                            Vol.1 Issue 1 

157 

IJBEST  ISSN (2959-586X) and ISBN (978-9970-9943-4-2)  

 

• Passenger Portal: Allowed users to view balances and transaction history. Recharge request 

functionality worked correctly. 

 

 
Figure 7: Passenger App UI 

 

• Operator/Driver Dashboard: Displayed live passenger activity and fare deductions per trip. 

 

 
Figure 8: Operator/Driver Web UI 

• Admin Control Panel: Enabled administrators to register/deactivate cards, manage users, and 

monitor analytics. Role-based access control was enforced. 
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Figure 9: Admin Dashboard UI 

4.6 Limitations Identified 

Despite the successful results, several limitations were observed: 

• The system’s dependency on stable internet connectivity may limit usability in rural or low-

infrastructure areas. 

• Hardware prototype needs improved ruggedness and environmental resilience for real-world 

deployment 

• The dynamic fare computation currently uses Euclidean (straight-line) distance between entry 

and exit points, which may underestimate the actual travel distance along curved or non-linear 

routes. Incorporating road-network-based or GPS-trace distance calculations (e.g., Haversine or 

map-matching algorithms) would improve accuracy and fairness. 

• Recharge process not fully integrated with mobile money APIs, limiting user convenience. 

• Occasional RFID scan alignment errors, requiring passengers to retap cards. 

5. Conclusion 

This study presented FareFlow, a smart bus fare collection system that integrates RFID technology, IoT 

hardware, and cloud-based services to address inefficiencies in Uganda’s cash-dependent public 

transportation sector. Prototype implementation demonstrated that FareFlow can process transactions in 
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under 1.4 seconds, synchronize balances and logs in real time, and provide transparency through web, 

SMS, and email notifications. The system improves efficiency, accountability, and hygiene by 

minimizing human error, reducing boarding delays, and lowering risks associated with cash handling. 
 

The evaluation further showed that FareFlow is both feasible and scalable using cost-effective 

components such as NodeMCU ESP8266, RC522 RFID reader, and Firebase Firestore. Stakeholders; 

passengers, operators, and administrators; benefit from tailored interfaces that enhance user experience, 

financial oversight, and system governance. Nonetheless, challenges such as dependence on stable 

internet connectivity, limited mobile money integration, and non-ruggedized hardware must be 

addressed before large-scale deployment. 
 

Overall, FareFlow demonstrates how affordable IoT and cloud-based technologies can modernize public 

transportation in developing countries while directly contributing to SDG 9 by fostering innovation and 

digital infrastructure, and to SDG 11 by promoting sustainable, safe, and inclusive urban mobility. 

Future work should focus on integrating mobile payment systems, improving hardware durability, and 

piloting the solution at scale. By doing so, FareFlow can serve as a model for smart, transparent, and 

sustainable fare collection across Africa and beyond. 
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