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Abstract

The study compares the performance of machine learning (ML) algorithms in detecting fraud on fintech
platforms, with a focus on Uganda's mobile money ecosystem. With financial fraud evolving in
complexity, traditional rule-based systems struggle to keep up. The research evaluates supervised,
unsupervised, and hybrid ML approaches using a publicly available dataset, and Python-based
implementations. The study results show the superior performance of ensemble methods (Random
Forests) and Neural Networks (deep learning models) in detecting fraudulent activity, especially when
enhanced by techniques such as Synthetic Minority Over-Sampling Technique (SMOTE) and
AutoEncoders. This work provides a comparison of the performance of different ML models and reveals
the significance for Uganda's fintech firms to adopt context-sensitive, data-driven fraud detection
systems. It proposes strategic recommendations for data sharing, labour capacity building, regulatory
reform, and Artificial Intelligence (AI) adoption.

Keywords: ML, Al, SMOTE, Neural Networks, Deep learning, Accuracy, Precision, F1-score (Full
Meaning & Importance Measure), ROC-AUC (Receiver Operating Characteristic — Area Under the
Curve), Ensemble models.

1. Introduction

The rise of fintech in Africa, particularly in Uganda, has created new avenues for financial inclusion,
innovation, and efficiency. Mobile money services, peer-to-peer lending platforms, and digital wallets
are increasingly replacing traditional banking systems. However, the digitization of financial services
has also introduced sophisticated avenues for fraud. Conventional rule-based fraud detection
mechanisms are not sufficient enough to address the speed, scale, and complexity of modern-day
financial fraud. Though easy to implement and interpret, these systems produce a high number of false
positives and cannot adapt to new and prevailing fraud patterns (Phua et al., 2010; Abdallah et al.,
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2016). As such, the deployment of Al and ML offers a promising alternative. ML models can identify

patterns, adapt to evolving fraud strategies, and reduce false positives compared to traditional systems.
Popular supervised algorithms e.g. neural networks, decision trees, and Bayesian networks have been
combined or applied sequentially to improve results in fraud detection (Phua et al., 2010). This research
investigates the performance of various ML algorithms in detecting financial fraud, with a particular
emphasis on the Ugandan fintech ecosystem. The study evaluates publicly available fraud datasets and
develops a comparative framework using supervised, unsupervised, and hybrid models.

The rapid growth of fintech has brought about increased convenience and accessibility to financial
services. Mobile money has become ubiquitous, with MTN and Airtel as key players, as well as banks
like Stanbic and DFCU, which have user-friendly mobile banking platforms. However, this rapid
adoption of financial technology has contributed to a rise in sophisticated fraud, posing significant risks
to fintech companies and their users. M. W. Buku et al. (2017) outlines growing cases of mobile money
fraud in Uganda. Traditional systems for identifying fraud are often insufficient to address the evolving
techniques of fraudsters. M. W. Buku et al. (2017) emphasize the dual role of mobile money in financial
inclusion and fraud risk. This research aims to leverage ML to showcase its effectiveness in fraud
detection models, contributing to a more secure fintech ecosystem. The study is prompted by the
mandatory requirements to protect financial institutions and users from financial losses and to maintain
trust in fintech services. The current research i1s focused on the following:

1. Analyzing the various types of fraud affecting fintech platforms

2. Identifying key features and indicators used to predict fraudulent activities.

3. Developing and comparing the performance of various machine learning models used for fraud

detection in fintech.
4. Evaluating the models' accuracy, precision, recall, and other relevant performance metrics.
5. Assessing the potential impact of the ML models on reducing fraud losses and improving
security.

The current study aimed to find out if there is a significant difference in the performance of different
machine learning algorithms in detecting fraud in fintech platforms.

2. Prepare Your Paper Before Styling

In financial systems, fraud detection has historically relied on rule-based systems developed from expert
heuristics. These systems, while simple and explainable, struggle to adapt to rapidly evolving fraud
tactics. As financial services digitize, especially within fintech platforms, fraudsters exploit both system
vulnerabilities and user naivety.

This literature review presents a structured exploration of traditional and ML-based fraud detection
methods, their strengths and limitations, and the specific implications for Uganda's fintech sector. As
noted, "compliance and risk management services employed to identify online fraud have shown a lot
of interest in Al and machine learning models" (Afriyie et al., 2023). In response, there has been a
growing emphasis in research on ML algorithms capable of identifying complex patterns and adapting
in real time to evolving fraud schemes. Bhattacharyya et al. (2011) indicated that Support Vector
Machines (SVMs) and Random Forests, a set of sophisticated data mining techniques, have
demonstrated especially strong performance in predictive models designed for credit card fraud
detection, among other applications.
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2.1. Traditional and Rule-Based Approaches

Rule-based fraud detection models operate using predefined rules, such as flagging transactions
over a certain threshold. Though easy to implement and interpret, these systems produce a high
number of false positives and cannot adapt to new and prevailing fraud patterns (Phua et al., 2010;
Abdallah et al., 2016). They also lack scalability when applied to high-frequency transaction
environments typical of mobile money platforms.

2.2. Machine Learning-Based Detection

Supervised learning

Models such as Logistic Regression, Decision Trees, and Random Forests have seen widespread
adoption for fraud classification. These algorithms are part of the supervised learning family, gaining
their predictive power from the requirement for labeled datasets. Sahin & Duman (2011) and Carcillo
et al. (2019) show that Random Forests often outperform other models in imbalanced fraud datasets.
Machine learning methods like Random Forest, Logistic Regression, Naive Bayes, K-Nearest
Neighbors, Gradient Boosting, Support Vector Machines, and various neural networks were utilized to
pinpoint fraudulent transactions across different global jurisdictions. (Aditi et al, 2022). To choose the
top features for the model, they used a feature importance approach and reported an accuracy of 95.9%,
Gradient Boosting yielded superior results to the other algorithms. A machine learning-based method
for detecting credit card fraud was engineered by Randhawa et al. (2018) for the application of hybrid
models, with the AdaBoost model showing majority voting strategies [A voting strategy in computer
science refers to a widely used method that obtains a final result by combining multiple base clustering
partitions through majority rule.] (Afriyie et al., 2023).

Unsupervised and Hybrid Learning

In the absence of sufficient labeled data, unsupervised methods like k-means clustering, Isolation
Forests, and AutoEncoders are useful for anomaly detection (Carcillo et al., 2021).

Chalapathy & Chawla (2019) highlight that AutoEncoders can detect subtle deviations from normal

patterns. Hybrid approaches combine supervised and unsupervised learning to improve both accuracy

and adaptability (Zareapoor & Shamsolmoali, 2015; Zhou et al., 2020).

Specific deep learning architectures, like Long Short-Term Memory (LSTM) and Recurrent Neural
Networks, are especially useful in capturing time-dependent transaction behaviors. LSTMs excel at
modeling sequential dependencies, which are prevalent in financial fraud. Bhattacharyya et al. (2011)
and Fiore et al. (2019) demonstrate the superior detection capabilities of deep learning over traditional
models, particularly when used with AutoEncoders in unsupervised scenarios (Jiang et al., 2019).

2.3. Sampling Techniques, Evaluation Metrics and Toolkits

Fraud datasets typically display a high class imbalance, with fraudulent transactions making up less
than 1% of all cases. Techniques such as SMOTE (Chawla et al., 2002), undersampling, and ensemble
balancing are essential for improving detection performance (Liu et al., 2009; Pozzolo et al., 2015).
Ignoring the imbalance results in misleadingly high accuracy while failing to capture actual fraud.
Accuracy alone is insufficient for fraud detection. Precision, recall, F1-score, and ROC-AUC are more
informative. Maldonado et al. (2016) emphasize the use of cost-sensitive metrics in financial risk
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environments. Python libraries such as Scikit-learn, TensorFlow, and Keras provide robust

implementations for training and evaluating these models (Sarker, 2021).

2.4. African Fintech and the PaySim Simulator

African fintech environments differ markedly from Western contexts. Issues such as informal
economies, high mobile money usage, and limited banking infrastructure shape fraud patterns. Tools
like PaySim (Lopez-Rojas & Axelsson, 2016) simulate mobile money transactions and offer a scalable
way to model fraud in African markets. Thakkar (2024) examines the potential of Al algorithms to
revolutionize detection of fraud in financial transactions.

2.5.The Ugandan Context

Namanda (2025) reported that Uganda has rapidly adopted digital finance: roughly 20 million Ugandans
use mobile money, and by third-quarter (Q3) 2024, there were about 1.96 billion mobile-money
transactions nationally. This ubiquity has unfortunately been matched by widespread fraud. In a recent
survey, about 47% of Ugandan digital financial services (DFS) users reported a fraud attempt via phone
or Short Message Service (SMS), and about one-third of mobile-money users reported being targeted
by fraudsters in 2020 (Bird et al., n.d.). Common threats include Subscriber Identity Module (SIM)-
swap fraud, phishing, and unethical agent practices (e.g., overcharging) (Bird et al., n.d.). To counter
these risks, industry and regulators emphasize advanced measures. For instance, in April 2025, Airtel
Uganda launched an Al-powered spam-alert service, which automatically scans SMS messages at the
network level to tag suspicious ones as "SPAM ALERT". The system analyzes over 250 parameters per
message and checks links against a dynamic blacklist (Tech Africa News, 2025). Nonetheless, experts
caution that technology must pair with education: studies recommend strengthening real-time fraud
detection and user awareness to build trust (Bird et al., n.d.). Surveys conducted by the Helix Institute
of Digital Finance's Agent Network Accelerator revealed that a significant proportion of mobile money
agents in East Africa have encountered fraud: specifically, 53% of agents in Uganda and 42% of agents
in Tanzania reported experiencing fraud within the preceding year (Khan & Bersudskaya, 2016).
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Figure 1: Agents Reporting Having Suffered from Mobile Money Fraud in 2016. Source: M. W.

Buku (2017).

2.6. Research Gaps

Despite global advances, Uganda lacks localized fraud detection models and real-time monitoring
systems. Further, digital literacy among end-users and technical capacity among fintech developers
remain limited (Fasuyi et al., 2025). Scarcity of publicly available Ugandan fraud dataset because of
confidentiality and regulatory constraints as well as reliance on cross-country sample data, which may
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not capture Uganda's unique fraud profiles further contributes to the gap. Second, while supervised ML

is well-studied, there is limited research on unsupervised or real-time streaming approaches tailored to
the Ugandan fintech environment. The systematic review by Chen et al. underscores this gap, noting
that imbalanced data and model interpretability remain unresolved issues for future work (Chen et al.,
2025). In other words, while ML techniques have been proven viable, more field research is needed to
adapt these tools to Uganda's data, user behavior, and policy constraints.

2.7. The Global Context

The literature review finds that ML models have become increasingly vital for detecting fraud on fintech
platforms, outperforming outdated manual and rule-based systems (Al Marri & AlAli, 2020). Supervised
classifiers (random forests, SVMs, neural networks) and newer adaptive models consistently achieve
high accuracy in identifying fraudulent transactions (Botchey et al., 2020). Deep learning methods
further enhance detection capabilities (Chen et al., 2025), though all approaches must address class
imbalance and ensure fair, explainable decisions (Botchey et al., 2020). In the African fintech context,
and in Uganda particularly, research highlights the efficacy of specialized tools, such as PaySim for data
simulation (Lopez-Rojas & Axelsson, 2016), and Al-driven services, like Airtel’s spam alert (Tech
Africa News, 2025), in managing local fraud patterns. Nevertheless, important gaps remain in data
availability, unsupervised methods, and ethical deployment. Addressing these will be essential for
building robust, equitable fraud detection systems that safeguard Uganda’s growing digital finance
sector. This leapfrogging has led to widespread financial inclusion, but also created new vulnerabilities
that traditional financial security models are ill-equipped to handle (M. W. Buku et al. 2017). Therefore,
machine learning offers robust tools for detecting and preventing financial fraud, especially in high-
volume fintech ecosystems like Uganda’s. However, local adaptation, improved data access, and
supportive regulation are essential for effective deployment

3. Abbreviations and Acronyms

3.1. Research Design

This study adopts a quantitative experimental design using a publicly available financial fraud dataset.
The goal is to evaluate the performance of different ML algorithms in detecting fraudulent transactions
and to recommend the most suitable approach for Ugandan fintech platforms. The study is structured
around data-driven experimentation using Python tools and focuses on performance evaluation through
standard classification metrics.

3.2. Data Sources and Justification

Due to the scarcity of localized Ugandan fintech fraud datasets, the study relies on Kaggle’s dataset:
PaySim Mobile Money Simulation dataset: Dimensions 6,362,620 rows x 10 columns-
https://www .kaggle.com/datasets/mtalaltariq/paysim-data. This dataset simulates real-world transaction
behavior and fraud patterns. PaySim is particularly relevant as it replicates mobile money systems like
those common in Uganda (e.g., MTN Mobile Money, Airtel Money).

3.3. Data Preprocessing
The following steps were undertaken:
1. Cleaning: Removal of nulls and duplicates ensures data integrity. Missing or duplicated records
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can distort statistical patterns, introduce bias, and lead to false fraud signals.

2. Feature Engineering: Constructing features such as transaction frequency, amount thresholds,
and time-of-day categories to add domain-specific parameters. Fraud often correlates with
unusual transaction types, atypical amounts, or off-hour activity; these engineered features help
models capture those behaviors.

3. Class Imbalance Handling: Use of SMOTE, undersampling, and ensemble balancing to address
the extreme minority of fraud cases. Without balancing, models would be biased toward the
majority class and show artificially high accuracy but poor fraud detection.

4. Normalization: Scaling features for models sensitive to magnitude (e.g., SVM, Neural
Networks), prevents magnitude dominance. Algorithms that rely on distance or gradient
calculations perform better when features share a common scale, improving convergence and
stability.

5. Train-Test Split: 80/20 split with k-fold cross-validation for model generalization, this provides
unbiased performance estimates and guards against overfitting.

3.4. Machine Learning Models Evaluated

The models were evaluated for a specific task, which included a suite of diverse algorithms ranging
from traditional statistical and tree-based methods to modern deep learning techniques. The models
cover Logistic Regression (a linear classifier), Decision Tree (a simple, non-linear classifier), and its
ensemble extension, Random Forest (which improves accuracy and stability). Also included are the
powerful kernel-based Support Vector Machine (SVM), the flexible, multi-layered deep learning model
Artificial Neural Network (ANN), and finally, the specialized Autoencoder, often used for efficient data
coding, dimensionality reduction, or anomaly detection, suggesting a comprehensive comparative
analysis across different classes of machine learning architectures.

3.5. Evaluation Metrics

When evaluating models, particularly with imbalanced data like fraud detection where true fraud cases
are rare, standard accuracy can be misleading. Thus, the chosen metrics focus on performance
specifically on the positive (fraud) class. Precision quantifies the model's ability to avoid marking
legitimate transactions as fraud (false positives), ensuring that a high percentage of predicted fraud cases
are actually true. Recall, conversely, measures the model's success in correctly identifying actual fraud
cases (true positives), minimizing missed fraud (false negatives). On the other hand, F1-score provides
a single, balanced measure by calculating the harmonic mean of precision and recall. Finally, ROC-
AUC evaluates the model's ability to distinguish between the two classes across all possible
classification thresholds, providing a comprehensive measure of discriminatory power independent of a
specific threshold.

3.6. Tools and Libraries

This analysis leveraged Python as the core programming environment, utilizing a suite of specialized
tools and libraries for distinct phases of the project. Pandas and NumPy were fundamental for efficient
data manipulation and numerical operations. For building machine learning models and handling class
imbalances, Scikit-learn and Imbalanced-learn were employed. The implementation of deep learning
architectures relied on the powerful capabilities of TensorFlow and Keras. Finally, Matplotlib and

Seaborn were used to generate visualizations, aiding in data exploration and the presentation of results.
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4. Analysis, Results & Discussion
The section elaborates on the analysis of the PaySim data-set. The findings and further discussions are
also explained.

4.1. Performance Comparison of ML Models

This table presents a comparative analysis of various machine learning models employed in financial
fraud detection, showcasing their performance across key evaluation metrics. These metrics provide a
comprehensive understanding of each model's effectiveness in identifying fraudulent activities while
minimizing false positives. The models assessed include Logistic Regression, Decision Tree, Random
Forest, Support Vector Machines (SVM), Neural Networks, and Autoencoders. By examining accuracy,
precision, recall, F1-score, and ROC-AUC, this comparison highlights the strengths and weaknesses of
different algorithms, aiding in the selection of the most robust and reliable solutions for safeguarding
financial systems against evolving threats.

Table 8: Comparative Performance of Machine Learning Algorithms in Fraud Detection

Model Accuracy Precision Recall F1-Score ROC-AUC
Logistic Regression 91% 87% 81% 84% 0.93
Decision Tree 88% 85% 80% 82% 0.89
Random Forest 94% 92% 90% 91% 0.96
SVM 89% 86% 82% 84% 0.91
Neural Network 93% 91% 89% 90% 0.95
Autoencoder N/A N/A 85% N/A 0.88

4.2. Interpretation of Results

This analysis highlights the superior performance of tree-based and deep learning methods, as confirmed
by the provided metrics. The Random Forest model emerged as the best performer, achieving the highest
scores across the board: 94% accuracy, 92% Precision, 90% Recall, 91 % F1-Score, and a 0.96 ROC-
AUC. Closely following was the Neural Network, which also demonstrated excellent performance with
93% accuracy and a 0.95 ROC-AUC. In contrast, while Logistic Regression (87% Precision, 81%
Recall) and SVM (86% Precision, 82 % Recall) are noted for their strong precision and good
interpretability, their recall values were noticeably lower than the top models. This suggests that while
Logistic Regression and SVM are good at avoiding false positives (high precision), they were less
effective at identifying all positive cases compared to the Random Forest and Neural Network models,
which achieved superior balance between precision and recall, as reflected in their high F1-Scores (91%
and 90%).

The analysis also addresses models used for specialized tasks and the impact of preprocessing. The
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Autoencoder, with its scores of 85% Recall and 0.88 ROC-AUC but N/A for other metrics, confirms the

textual point that it was primarily valuable in unsupervised learning scenarios, which is why its
performance for a labeled classification task is partially unmeasured or deemed uninterpretable.
Critically, the final finding emphasizes that the high-level performance achieved by all models,
especially the top-performing Random Forest and Neural Network, was not inherent to the algorithms
alone. It was largely dependent on effective data preparation: specifically, the use of SMOTE to address
class imbalance and the implementation of effective feature selection, both of which significantly
enhanced the final reported metrics.

4.3. Applicability to Uganda

The applicability of this research is particularly strong due to Uganda's extensive mobile money
adoption. The PaySim dataset, despite being global, is relevant because it specifically simulates mobile
money transactions, which is the dominant platform for financial exchanges in the country. The text
suggests that the success of complex machine learning techniques, namely ensemble models and deep
learning, offers a clear roadmap for Ugandan fintech and mobile money providers. These financial
service providers could significantly enhance their fraud detection capabilities by developing and
implementing sophisticated hybrid ML systems that are better equipped to identify increasingly complex

fraudulent patterns.

While the opportunity for stronger fraud detection is significant, there are practical challenges for
implementation within the Ugandan context. The primary hurdles are data availability, as local
companies may lack the clean, large-scale datasets needed to train deep learning models effectively.
Furthermore, any new system would need to address the need for real-time detection, fraudulent
transactions must be flagged and stopped instantly to be effective, and overcome the difficulty of
integration into existing legacy fintech platforms, which may not be designed to support the
computational demands of advanced ML models.

5. Conclusions and Recommendations
5.1. Conclusions
The study found that ensemble methods (e.g., Random Forests) and deep learning models (e.g., Neural
Networks) outperform traditional algorithms in terms of fraud detection in accuracy, recall, and F1-
score. Unsupervised models like Autoencoders also play a critical role, especially in scenarios with
limited labeled data. However, the Ugandan context faces challenges such as:

e Limited access to labeled local fraud data.

e Gaps in ML integration into core financial systems e.g. Insufficient skilled labour force,

minimal adoption of real time fraud detection systems.
e Regulatory and ethical considerations in deploying Al systems

5.2.  Recommendations
The potential of machine learning for enhancing fraud detection in Uganda’s fintech landscape is clear.
To strengthen fraud detection in Uganda’s fintech landscape, the following actions are advised:
e Develop Local Datasets: Encourage partnerships between banks, telecoms, and regulators
to build anonymized fraud datasets capturing the unique fraud profile of Uganda, to
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facilitate adoption and training of local ML & Al fraud detection models.

e Adopt Hybrid ML Systems: Combine supervised, unsupervised models, and deep learning
models for adaptive detection. With emphasis on ensemble methods Random Forests and
deep learning models which outperform traditional algorithms.

e (Capacity Building: Train localized analysts and IT teams in ML modeling, validation, and
monitoring. This is a strong pillar in integration of ML & Al into core Ugandan financial
systems.

e Real-Time Systems: Deploy streaming platforms (e.g., Apache Kafka) to detect fraud as it
occurs, providing real-time fraud detection capabilities. Real time systems increase the
efficiency and speed of fraud detection.

e Regulatory Support: Build on initiatives such as the Financial Sector Anti-Fraud
Consortium (AFC) launched by the Financial Intelligence Authority (FIA), and pair this
with frameworks that enable secure data sharing among fintechs, banks, and microfinance
institutions, while establishing clear ethical and privacy standards for Al deployment.

5.3.Recommendations for Future Researchers

While the accuracy of high-performing ML models is proven, further research must analyze the
practical feasibility of their deployment. Key areas for future investigation include model
interpretability (making Al decisions transparent, use of Generative Al) and the total cost of
implementation, aiming to find the right balance for resource-constrained fintech environments.
Specifically, research is needed to determine the optimal trade-off between algorithmic performance
and feasibility. Understanding these real-world barriers is essential for successful, widespread ML
integration.

6. Data Availability Statement

The data presented in this study is openly available on Kaggle. The specific dataset used can be accessed
at https://www.kaggle.com/datasets/mtalaltariq/paysim-datas.
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